Group theory |
---|
Group theory |
Cyclic group Zn
Symmetric group, Sn Dihedral group, Dn Alternating group An Mathieu groups M11, M12, M22, M23, M24 Conway groups Co1, Co2, Co3 Janko groups J1, J2, J3, J4 Fischer groups F22, F23, F24 Baby Monster group B Monster group M |
|
Solenoid (mathematics)
Circle group General linear group GL(n) Special linear group SL(n) Orthogonal group O(n) Special orthogonal group SO(n) Unitary group U(n) Special unitary group SU(n) Symplectic group Sp(n) Lorentz group Poincaré group Conformal group Diffeomorphism group Loop group Infinite-dimensional Lie groups O(∞) SU(∞) Sp(∞) |
Lie groups |
---|
General linear group GL(n)
Special linear group SL(n) Orthogonal group O(n) Special orthogonal group SO(n) Unitary group U(n) Special unitary group SU(n) Symplectic group Sp(n) |
In mathematics, the unitary group of degree n, denoted U(n), is the group of n×n unitary matrices, with the group operation that of matrix multiplication. The unitary group is a subgroup of the general linear group GL(n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields.
In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with absolute value 1 under multiplication. All the unitary groups contain copies of this group.
The unitary group U(n) is a real Lie group of dimension n2. The Lie algebra of U(n) consists of complex n×n skew-Hermitian matrices, with the Lie bracket given by the commutator.
The general unitary group (also called the group of unitary similitudes) consists of all matrices such that is a nonzero multiple of the identity matrix, and is just the product of the unitary group with the group of all positive multiples of the identity matrix.
Contents |
Since the determinant of a unitary matrix is a complex number with norm 1, the determinant gives a group homomorphism
The kernel of this homomorphism is the set of unitary matrices with determinant 1. This subgroup is called the special unitary group, denoted SU(n). We then have a short exact sequence of Lie groups:
This short exact sequence splits so that U(n) may be written as a semidirect product of SU(n) by U(1). Here the U(1) subgroup of U(n) consists of matrices of the form diag(eiθ, 1, 1, ..., 1).
The unitary group U(n) is nonabelian for n > 1. The center of U(n) is the set of scalar matrices λI with λ ∈ U(1). This follows from Schur's lemma. The center is then isomorphic to U(1). Since the center of U(n) is a 1-dimensional abelian normal subgroup of U(n), the unitary group is not ‹The template Dab button is being considered for deletion.› [//toolserver.org/~dispenser/cgi-bin/dab_solver.py?page=Unitary_group&editintro=Template:Disambiguation_needed/editintro&client=Dab_button&fixlinks=semisimple . ]
The unitary group U(n) is endowed with the relative topology as a subset of Mn(C), the set of all n×n complex matrices, which is itself homeomorphic to a 2n2-dimensional Euclidean space.
As a topological space, U(n) is both compact and connected. The compactness of U(n) follows from the Heine-Borel theorem and the fact that it is a closed and bounded subset of Mn(C). To show that U(n) is connected, recall that any unitary matrix A can be diagonalized by another unitary matrix S. Any diagonal unitary matrix must have complex numbers of absolute value 1 on the main diagonal. We can therefore write
A path in U(n) from the identity to A is then given by
The unitary group is not simply connected; the fundamental group of U(n) is infinite cyclic for all n:
The first unitary group U(1) is topologically a circle, which is well known to have a fundamental group isomorphic to Z, and the inclusion map is an isomorphism on . (It has quotient the Stiefel manifold.)
The determinant map induces an isomorphism of fundamental groups, with the splitting inducing the inverse.
The unitary group is the 3-fold intersection of the orthogonal, symplectic, and complex groups:
Thus a unitary structure can be seen as an orthogonal structure, a complex structure, and a symplectic structure, which are required to be compatible (meaning that one uses the same J in the complex structure and the symplectic form, and that this J is orthogonal; writing all the groups as matrix groups fixes a J (which is orthogonal) and ensures compatibility).
In fact, it is the intersection of any two of these three; thus a compatible orthogonal and complex structure induce a symplectic structure, and so forth. [1] [2]
At the level of equations, this can be seen as follows:
Any two of these equations implies the third.
At the level of forms, this can be seen by decomposing a Hermitian form into its real and imaginary parts: the real part is symmetric (orthogonal), and the imaginary part is skew-symmetric (symplectic)—and these are related by the complex structure (which is the compatibility). On an almost Kähler manifold, one can write this decomposition as , where h is the Hermitian form, g is the Riemannian metric, i is the almost complex structure, and is the almost symplectic structure.
From the point of view of Lie groups, this can partly be explained as follows: is the maximal compact subgroup of , and is the maximal compact subgroup of both and . Thus the intersection of or is the maximal compact subgroup of both of these, so . From this perspective, what is unexpected is the intersection .
Just as the orthogonal group has the special orthogonal group SO(n) as subgroup and the projective orthogonal group PO(n) as quotient, and the projective special orthogonal group PSO(n) as subquotient, the unitary group has associated to it the special unitary group SU(n), the projective unitary group PU(n), and the projective special unitary group PSU(n). These are related as by the commutative diagram at right; notably, both projective groups are equal: .
The above is for the classical unitary group (over the complex numbers) – for unitary groups over finite fields, one similarly obtains special unitary and projective unitary groups, but in general .
In the language of G-structures, a manifold with a -structure is an almost Hermitian manifold.
From the point of view of Lie theory, the classical unitary group is a real form of the Steinberg group , which is an algebraic group that arises from the combination of the diagram automorphism of the general linear group (reversing the Dynkin diagram , which corresponds to transpose inverse) and the field automorphism of the extension (namely complex conjugation). Both these automorphisms are automorphisms of the algebraic group, have order 2, and commute, and the unitary group is the fixed points of the product automorphism, as an algebraic group. The classical unitary group is a real form of this group, corresponding to the standard Hermitian form , which is positive definite.
This can be generalized in a number of ways:
Analogous to the indefinite orthogonal groups, one can define an indefinite unitary group, by considering the transforms that preserve a given Hermitian form, not necessarily positive definite (but generally taken to be non-degenerate). Here one is working with a vector space over the complex numbers.
Given a Hermitian form on a complex vector space , the unitary group is the group of transforms that preserve the form: the transform such that for all . In terms of matrices, representing the form by a matrix denoted , this says that .
Just as for symmetric forms over the reals, Hermitian forms are determined by signature, and are all unitarily congruent to a diagonal form with entries of 1 on the diagonal and entries of . The non-degenerate assumption is equivalent to . In a standard basis, this is represented as a quadratic form as:
and as a symmetric form as:
The resulting group is denoted .
Over the finite field with elements, , there is a unique degree 2 extension field, , with order 2 automorphism (the th power of the Frobenius automorphism). This allows one to define a Hermitian form on an vector space , as an -bilinear map such that and for . Further, all non-degenerate Hermitian forms on a vector space over a finite field are unitarily congruent to the standard one, represented by the identity matrix, that is, any Hermitian form is unitarily equivalent to
where represent the coordinates of in some particular -basis of the -dimensional space (Grove 2002, Thm. 10.3).
Thus one can define a (unique) unitary group of dimension for the extension , denoted either as or depending on the author. The subgroup of the unitary group consisting of matrices of determinant 1 is called the special unitary group and denoted or . For convenience, this article will use the convention. The center of has order and consists of the scalar matrices which are unitary, that is those matrices with . The center of the special unitary group has order and consists of those unitary scalars which also have order dividing . The quotient of the unitary group by its center is called the projective unitary group, , and the quotient of the special unitary group by its center is the projective special unitary group . In most cases ( and ), is a perfect group and is a finite simple group, (Grove 2002, Thm. 11.22 and 11.26).
More generally, given a field k and a degree-2 separable k-algebra K (which may be a field extension but need not be), one can define unitary groups with respect to this extension.
First, there is a unique k-automorphism of K which is an involution and fixes exactly ( if and only if ).[3] This generalizes complex conjugation and the conjugation of degree 2 finite field extensions, and allows one to define Hermitian forms and unitary groups as above.
The equations defining a unitary group are polynomial equations over (but not over ): for the standard form the equations are given in matrices as , where is the conjugate transpose. Given a different form, they are . The unitary group is thus an algebraic group, whose points over a -algebra are given by:
For the field extension and the standard (positive definite) Hermitian form, these yield an algebraic group with real and complex points given by:
The unitary groups are the automorphisms of two polynomials in real non-commutative variables:
These are easily seen to be the real and imginary parts of the complex form . The two invariants separately are invariants of O(2n) and Sp(2n,R). Combined they make the invariants of U(n) which is a subgroup of both these groups. The variables must be non-commutative in these invariants otherwise the second polynomial is identically zero.
The classifying space for U(n) is described in the article classifying space for U(n).